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COHORT HALF LIFE FORECASTING
COMBINATION FROM A CONFIDENT JURY

BACKGROUND

The present disclosure relates to computer systems, and
specifically to resource usage prediction by computer sys-
tems by a cohort of forecasting algorithms. Still more specifi-
cally, the present disclosure relates to resource usage predic-
tion based on half-life weightings of forecasting algorithms.

SUMMARY

In an embodiment of the present invention, a method and/
or computer program product implements a forecasting
cohort. A forecasting cohort of forecasting algorithms is gen-
erated. The forecasting cohort includes a first set of forecast-
ing algorithms of a first type of forecasting algorithm, and a
second set of forecasting algorithms of a second type of
forecasting algorithm. An initial confidence level and a half-
life of each of the first set of forecasting algorithms and the
second set of forecasting algorithms are determined. The
initial confidence level describes an accuracy level of each of
the forecasting algorithms at an initial time in predicting a
condition. The half-life describes a subsequent time at which
a forecasting algorithm has reached half of its forecast hori-
zon. A half-life weight for each of the first set of forecasting
algorithms and the second set of forecasting algorithms at a
subsequent time that is subsequent to the initial time are
determined. The half-life weights decrease an effect of a
forecasting algorithm as time elapses. A combined confi-
dence level of the forecasting cohort at the subsequent time is
determined. The combined confidence level is based on the
initial confidence level and the half-life weight of each of the
first set of forecasting algorithms and the second set of fore-
casting algorithms. The combined confidence level of the
forecasting cohort at the subsequent time is used to adjust
resource usage.

In an embodiment of the present invention, a device com-
prises a sensor and one or more processors. The sensor devel-
ops sensor readings from the device that describe current
conditions of the device. The one or more processors generate
a forecasting cohort of forecasting algorithms, where the
forecasting cohort comprises a first set of forecasting algo-
rithms of a first type of forecasting algorithm, and where the
forecasting cohort further comprises a second set of forecast-
ing algorithms of a second type of forecasting algorithm;
determine an initial confidence level and a half-life of each of
the first set of forecasting algorithms and the second set of
forecasting algorithms, where the initial confidence level
describes an accuracy level of each of the forecasting algo-
rithms at an initial time in predicting a condition, and where
the half-life describes a subsequent time at which a forecast-
ing algorithm has reached half of its forecast horizon; deter-
mine a half-life weight for each of the first set of forecasting
algorithms and the second set of forecasting algorithms at a
subsequent time that is subsequent to the initial time, where
half-life weights decrease an effect of a forecasting algorithm
as time elapses; determine a combined confidence level of the
forecasting cohort at the subsequent time, where the com-
bined confidence level is based on the initial confidence level
and the half-life weight of each of the first set of forecasting
algorithms and the second set of forecasting algorithms; pre-
dict future usage of the resources by the device based on the
combined confidence level of the forecasting cohort; and
reallocate resources based on the predicted future usage,
where the half-life weight is calculated according to:
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where mr is an amount of time that has passed since the initial
time,

h,, is a half-life of a forecasting algorithm, and

o is a correction factor derived from historical data for the
half-life weight, and

where the combined confidence level is calculated according
to:

7 1Sl

DD fwmesfr®

x=t f=0
where

17|

x=7

is a sum of all time slices taken during a life of the forecasting
cohort,
where

1l

Z frwe
=0

is a sum of all forecasting algorithm weights,

where

fw, represents all half-life weights of the forecasting algo-
rithms, and where

f{x) represents all forecasting algorithms in the forecasting
cohort.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an exemplary system and network in which
the present disclosure may be implemented;

FIG. 2 is a graph of confidence levels of two types of
prediction algorithms within a same forecasting cohort made
up of prediction algorithms; and

FIG. 3 is a high level flow-chart of one or more operations
performed by one or more hardware devices to implement a
forecasting cohort.

DETAILED DESCRIPTION

When combined into a forecasting cohort, some forecast-
ing algorithms (“forecasters™) in the forecasting cohort are
better than others over a time horizon. For example, one
forecaster might have excellent accuracy over a 24 hour
period while a second forecaster is excellent over a 2 hour
period. However, the second forecaster may not be very accu-
rate over a 24 hour period.

The present invention thus presents a method to combine
forecasters of different time horizons into a natural group that
follows the Condorcet jury theorem, which states that if each
voter in a jury has a greater than !> confidence of getting an
answer correct, then by adding additional such voters, the
total vote approaches a guaranteed correct decision. Con-
versely, voters in the jury that have a less than 1% confidence
of getting the answer correct make the jury (i.e., cohort) less
reliable.
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In accordance with one or more embodiments of the
present invention, a forecasting cohort of forecasting algo-
rithms includes multiple forecasting algorithms that have dif-
ferent time look aheads (forecast horizons). The forecast hori-
zon determines how far into the future the forecast will trend.
As aforecaster/forecasting algorithm goes further out into the
future, the less certain the forecast value. The present inven-
tion solves this uncertainty problem with half-life weights.

A half-life equation used as a basis of half-life weights for
forecasting algorithms in one or more embodiments of the
present invention is as follows:

N = N0€71T Equation 1

where:

N_=the original value;

e=an exponential decay factor;

t=the amount of time that has passed; and
t=the average half life time.

When used in a forecasting cohort of forecasting algo-
rithms, N, is equal to 1 since that is the starting maximum
weight. Thus, then Equation 1 simplifies to:

N = ef% Equation 2

The half-life is half of the forecast time horizon, such that
tau (t)=h half. For example, if a forecast time horizon (i.e., the
time period for which a forecaster is making predictions) is 2
hours, then the half-life of the prediction horizon is 1 hour.

The numerator of time passed, t, in the above simplified
Equation 2 is equal to m,. In accordance with one or more
embodiments of the present invention, an alpha value (o) is
added to adjust the decay value as it is learned over time. That
is, o is an adjustment factor to correct half-life weights as
described herein. This adjustment factor can be based on past
accuracy rates when using a particular forecasting algorithm.

As described herein, a decay factor for a forecasting cohort
gradually reduces weights of forecasting algorithms in the
forecasting cohort according to their half-life. Converting
Equation 2 from a natural log (e) formula to a base 2 formula
and adding an o correction factor, the resulting equation used
to adjust such half-life weights derived from Equation 2 is
thus:

7;’1"Tr*a Equation 3

2 2

where m, is an amount of time that has passed since the initial
time,
h,,, is a half-life of the forecasting algorithm, and

a is a correction factor derived from historical data for the
half-life weight.

As stated above, the alpha value (o) is the Condorcet jury
theorem learning variable, which is derived from a history of
accuracy for various forecasting algorithms when used in
previous cohorts/projects.

Using Equation 3, if the passed time is 30 and half-life is
30, and a is 1, then the half-life weight is 1%, according to:
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bR RIS T
Each forecaster, FWc, has a half-life weight equation:

_my
hl *Q

fre=2 2

Equation 4

As the present invention loops through a forecast interval,
a set of forecasting algorithms (f) make up a cohort, C, such
that:

e

Through time, a time splice is applied to each forecasting
algorithm for a forecast weight. The sum of all forecast
weights is equal to 1:

Equation 6

EFOWEFx)fffvvle

After all of the weights are calculated for all forecasters in
a cohort for each time step, each of the forecasts are multi-
plied and added together, such that:

Equation 7

Ex:t‘ﬂz:ﬁomjj’wx *jj(x)
where

Equation 8

is a sum of all time slices taken during a life of the forecasting
cohort, where

1l

Z frwe
=0

is a sum of all forecasting algorithm weights,

where

fw, represents all half-life weights of the forecasting algo-
rithms, and

where

f(x) represents all forecasting algorithms in the forecasting
cohort.

The forecasting cohort thus has a combined score for each
time step, with the end result being an array of combined
scores for each time step in the forecast period.

The present invention thus presents a method to relate
half-life weight values to the Condorcet jury theorem of being
4 or greater confident that a solution is correct. As aresult, a
cohort of forecasters (forecasting algorithms) is combined
into ajury to forecast the future. To ensure that each forecaster
has %2 or greater confidence, a half-life equation is used to
lessen the confidence of the cohort when the half-confidence
level is approached and passed, as described below. An addi-
tional weight term is used to adjust the weights as accuracy is
learned.

With reference now to the figures, and in particular to FIG.
1, there is depicted a block diagram of an exemplary system
and network that may be utilized by and/or in the implemen-
tation of the present invention. Note that some or all of the
exemplary architecture, including both depicted hardware
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and software, shown for and within computer 102 may be
utilized by software deploying server 150, and/or equipment
156.

Exemplary computer 102 includes a processor 104 that is
coupled to a system bus 106. Processor 104 may utilize one or
more processors, each of which has one or more processor
cores. A video adapter card 108, which drives/supports a
display 110, is also coupled to system bus 106. In one or more
embodiments of the present invention, video adapter card 108
is a hardware video card. System bus 106 is coupled via a bus
bridge 112 to an input/output (/O) bus 114. An [/O interface
116 is coupled to I/O bus 114. I/O interface 116 affords
communication with various I/O devices, including a key-
board 118, a mouse 120, a media tray 122 (which may include
storage devices such as CD-ROM drives, multi-media inter-
faces, etc.), and external USB port(s) 126. While the format of
the ports connected to /O interface 116 may be any known to
those skilled in the art of computer architecture, in one
embodiment some or all of these ports are universal serial bus
(USB) ports.

As depicted, computer 102 is able to communicate with a
software deploying server 150, using a network interface 130.
Network interface 130 is a hardware network interface, such
as a network interface card (NIC), etc. Network 128 may be
an external network such as the Internet, or an internal net-
work such as an Ethernet or a virtual private network (VPN).

A hard drive interface 132 is also coupled to system bus
106. Hard drive interface 132 interfaces with a hard drive 134.
In one embodiment, hard drive 134 populates a system
memory 136, which is also coupled to system bus 106. Sys-
tem memory is defined as a lowest level of volatile memory in
computer 102. This volatile memory includes additional
higher levels of volatile memory (not shown), including, but
not limited to, cache memory, registers and buffers. Data that
populates system memory 136 includes computer 102’s oper-
ating system (OS) 138 and application programs 144.

0S 138 includes a shell 140, for providing transparent user
access to resources such as application programs 144. Gen-
erally, shell 140 is a program that provides an interpreter and
an interface between the user and the operating system. More
specifically, shell 140 executes commands that are entered
into a command line user interface or from a file. Thus, shell
140, also called a command processor, is generally the high-
est level of the operating system software hierarchy and
serves as a command interpreter. The shell provides a system
prompt, interprets commands entered by keyboard, mouse, or
other user input media, and sends the interpreted command(s)
to the appropriate lower levels of the operating system (e.g., a
kernel 142) for processing. Note that while shell 140 is a
text-based, line-oriented user interface, the present invention
will equally well support other user interface modes, such as
graphical, voice, gestural, etc.

As depicted, OS 138 also includes kernel 142, which
includes lower levels of functionality for OS 138, including
providing essential services required by other parts of OS 138
and application programs 144, including memory manage-
ment, process and task management, disk management, and
mouse and keyboard management.

Application programs 144 include a renderer, shown in
exemplary manner as a browser 146. Browser 146 includes
program modules and instructions enabling a world wide web
(WWW) client (i.e., computer 102) to send and receive net-
work messages to the Internet using hypertext transfer proto-
col (HTTP) messaging, thus enabling communication with
software deploying server 150 and other computer systems.

Application programs 144 in computer 102’s system
memory (as well as software deploying server 150°s system
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6

memory) also include a forecasting cohort logic (FCL) 148.
FCL 148 includes code for implementing the processes
described below, including those described in FIGS. 2-3. In
one embodiment, computer 102 is able to download FCL 148
from software deploying server 150, including in an on-de-
mand basis, wherein the code in FCL 148 is not downloaded
until needed for execution. Note further that, in one embodi-
ment of the present invention, software deploying server 150
performs all of the functions associated with the present
invention (including execution of FCL 148), thus freeing
computer 102 from having to use its own internal computing
resources to execute FCL 148.

Note that the hardware elements depicted in computer 102
are not intended to be exhaustive, but rather are representative
to highlight essential components required by the present
invention. For instance, computer 102 may include alternate
memory storage devices such as magnetic cassettes, digital
versatile disks (DVDs), Bernoulli cartridges, and the like.
These and other variations are intended to be within the spirit
and scope of the present invention.

With reference now to FIG. 2, a graph 200 of confidence
levels of two types of prediction algorithms (prediction algo-
rithm A and prediction algorithm B) within a same forecast-
ing cohort made up of prediction algorithms is presented.
Events predicted by prediction algorithm A and prediction
algorithm B include, but are not limited to, prices for certain
products/commodities, usage or resources (including soft-
ware, hardware, equipment, roads, etc.), weather events, etc.

As depicted in FIG. 2, prediction algorithm A has an initial
confidence level of 90%. That is, at time T, (the beginning of
a prediction horizon), prediction algorithm A is correct 90%
of'the time (according to historical data describing the use of
prediction algorithm A) when predicting what will happen
(i.e., an “event”) within a next time frame (e.g., the next 30
minutes). Similarly, prediction algorithm B has a historical
record of being accurate 80% of the time in predicting what
will happen within that same 30 minutes. Thus, initially,
prediction algorithm A is better than prediction algorithm B.
However, as time passes, prediction algorithm B becomes
more accurate than prediction algorithm A, which has a
sharper decay rate (i.e., the accuracy of prediction algorithm
A degrades faster than that of prediction algorithm B). As
described herein, this prediction accuracy decay is calculated
according to half-life weight equations, such as Equation 4
above.

Thus, between initial time T, and subsequent time T, in
graph 200, a forecasting cohort (i.e., a cohort of prediction
algorithms) is more accurate if heavily populated with pre-
diction algorithms such as prediction algorithm A. According
to the Condorcet jury theorem, loading the cohort with highly
confident prediction algorithms such as prediction algorithm
A will ensure that the cohort is more likely to be accurate
between initial time T, and subsequent time T} .

However, between time T, and time T,, prediction algo-
rithm A has degraded in accuracy (as calculated with the
half-life weight described above), such that a forecasting
cohort that is heavily populated with prediction algorithms
such as prediction algorithm B is more accurate between time
T, and time T,. However, prediction algorithm A is still more
than 50% confident in being accurate between time T, and
time T,, and thus is still a positive contributor to the forecast-
ing cohort.

However, between time T, and time T, prediction algo-
rithm A is not only less accurate than prediction algorithm B,
but prediction algorithm A is now also a liability to the fore-
casting cohort. That is, between time T, and time T, predic-
tion algorithm makes the forecasting cohort become less reli-
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able, since the accuracy of prediction algorithm A is likely to
be wrong (i.e., has an accuracy level of less than 50%). Since
every instance of a prediction algorithm such as prediction
algorithm A makes the forecasting cohort less reliable, then
the greater the number of prediction algorithms such as pre-
diction algorithm A that are in the forecasting cohort, the less
reliable the forecasting cohort becomes, even with the pres-
ence of still-reliable prediction algorithm(s) B.

Finally, after time T}, all prediction algorithms (prediction
algorithm(s) A and prediction algorithm(s) B) are less than
50% accurate, and the forecasting cohort should not be
trusted at all.

With reference now to FIG. 3, a high level flow-chart ofone
or more operations performed by one or more hardware
devices to implement a forecasting cohort is presented.

After initiator block 302, one or more processors generate
a forecasting cohort of forecasting algorithms, as described in
block 304. The forecasting cohort includes a first set of fore-
casting algorithms of a first type of forecasting algorithm, and
a second set of forecasting algorithms of a second type of
forecasting algorithm. That is, the forecasting cohort is made
up of multiple forecasting algorithms. However, each of the
forecasting algorithms has a different forecast horizon, such
that the different types of forecasting algorithms are likely to
have different effects on the overall reliability of the forecast-
ing cohort at different time slices.

As described in block 306, one or more processors deter-
mine an initial confidence level and a half-life of each of the
first set of forecasting algorithms and the second set of fore-
casting algorithms, where the initial confidence level
describes an accuracy level of each of the forecasting algo-
rithms at an initial time in predicting a condition, and where
the half-life describes a subsequent time at which a forecast-
ing algorithm has reached half ofits forecast horizon. Thus, as
described herein, an initial confidence level (e.g., 90% for
forecasting algorithm A shown in FIG. 2) is established. This
confidence level can be based on historical data indicating
how accurate a particular forecasting algorithm has been in
the past, including a time window (“forecast horizon) for
which the forecasting algorithm is designed (e.g., to be accu-
rate for the next 2 hours). The half-life is thus halfthe time that
the forecasting algorithm was designed for (i.e., 1 hour for a
2 hour forecasting algorithm).

As described in block 308, one or more processors then
determine a half-life weight for each of the first set of fore-
casting algorithms and the second set of forecasting algo-
rithms at a subsequent time that is subsequent to the initial
time. The half-life weights decrease an effect of a forecasting
algorithm as time elapses. The half-life weight formulas
described above thus reduce the impact of a particular fore-
casting algorithm such that the particular forecasting algo-
rithm has less impact on the overall trustworthiness (accu-
racy) of the forecasting cohort. As described herein, the half-
life weight formulas are a function of what the forecast
horizon is for a particular forecasting algorithm. Thus, the
weight (impact) of a short-horizon forecasting algorithm will
differ from the weight (impact) of a long-horizon forecasting
algorithm as time passes, since the short-horizon forecasting
algorithm loses its effectiveness/impact/trustworthiness
sooner that a long-horizon forecasting algorithm.

As described in block 310, one or more processors then
determine a combined confidence level of the forecasting
cohort at the subsequent time, where the combined confi-
dence level is based on the initial confidence level and the
half-life weight of each of the first set of forecasting algo-
rithms and the second set of forecasting algorithms. This
combined confidence level, using formulas described above,
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thus provide a point-in-time confidence level for the forecast-
ing cohort, based on what types of forecasting algorithms are
in play (i.e., short-term versus long-term) and where a time
slice is on the forecasting horizon.

Once a confidence level for the forecasting cohort is estab-
lished, it is then utilized in a technical manner to improve the
operation of a resource, including a computer, industrial
equipment, manufacturing machinery, etc. Thus, as described
inblock 312 of FIG. 3, one or more processors then utilize the
combined confidence level of the forecasting cohort at the
subsequent time to adjust resource usage. The flow-chart
shown in FIG. 3 terminates at terminator block 314.

For purposes of explanation, assume that one or more
processors receive sensor readings from a device (e.g., pro-
cessor 104 receives sensor readings from sensor 158 that
describe the operational conditions (i.e., load demands, tem-
perature, throughput, etc.) of equipment 156 shown in FIG. 1.
The half-life time weighted forecasting cohort described
herein is thus used to predict, by one or more processors, a
future usage of the resources in the device based on the
combined confidence level of the forecasting cohort. Based
on this forecasted future usage, resources used by the device
can be reallocated. For example, if the forecasting cohort
predicts a shortage of memory in the next two hours for a
particular server, then additional memory (e.g., from a
“cloud” of on-line storage resources) can be allocated to that
particular server.

Thus, in one embodiment of the present invention,
resources to be reallocated for use by the device (e.g., a
server) are hardware resources. In another or the same
embodiment of the present invention, the resources to be
reallocated are software resources, such as operating systems,
applications, etc.

Inone embodiment of the present invention, the reallocated
resources are within the device where the sensors are taking
readings. For example, additional memory, processors, etc. in
a server can be reallocated/reconfigured in response to a
sensor providing readings to the forecasting cohort of fore-
casting algorithms indicating an additional need of such hard-
ware resources in the future. Alternatively, the reallocated
resources may be from an external source (e.g., the “cloud”).

Thus, sensor readings from the device are used in combi-
nation with the forecasting cohort (and its confidence level at
a particular point in time) in order to accurately adjust
resource reallocation.

In one embodiment of the present invention, sensor read-
ings from the monitored device/resource are taken at the
initial time. This allows the forecasting cohort to have a
well-defined arc of reliability based on the half-life weights
described herein. However, in another embodiment, sensor
readings from the monitored device are taken at the subse-
quent time, thus allowing the forecasting cohort to be
dynamically adjusted. That is, sensor readings taken at the
initial time (e.g., time T, in FIG. 2) are utilized by the pro-
cessors generating the confidence level of the forecasting
cohort to define a certain arc in the reliability/accuracy of the
forecasting cohort, such that the level of reliability/accuracy
of' the forecasting cohort is known for any point in time in the
future (before being reached). However, by adjusting the
confidence level of the confidence level of the forecasting
cohort with updated sensor readings (e.g., at a subsequent
time such as time T, in FIG. 2), this confidence level can be
fine-tuned to be more accurate.

In one embodiment of the present invention, the future
resource usage is predicted at the initial time. That is, based
on the weights of the forecasting algorithms and their quan-
tity (i.e., how many of each type of weighted forecasting
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algorithm is found in the forecasting cohort), a determination
can be made as to how reliable the forecasting cohort is at the
initial time T, shown in FIG. 2. However, in a preferred
embodiment of the present invention, the predictions made
from the forecasting cohort are made at a subsequent time
(e.g., time T, or time T, in FIG. 2).

As described above, the half-life weight of a forecasting
algorithm is:

m
_mr

2 hip?

where m, is an amount of time that has passed since the initial
time,

h, , is a half-life of the forecasting algorithm, and

a is a correction factor derived from historical data for the
half-life weight, and

wherein the combined confidence level is calculated accord-
ing to:

17 If1
D fpwen fr0
f=0

x=t

where

=

x:

is a sum of all time slices taken during a life of the forecasting
cohort,
where

1

fowx
=0

is a sum of all forecasting algorithm weights,

where

fw, represents all half-life weights of the forecasting algo-
rithms, and where

f(x) represents all forecasting algorithms in the forecasting
cohort.

In one embodiment of the present invention, a device (e.g.,
equipment 156 shown in FIG. 1) includes a sensor (e.g.,
sensor 158) and one or more processors (e.g., processor 160).
The device may be a computer, a manufacturing device (e.g.,
a machine such as a lathe), an industrial device (e.g., a pump
used in a refinery), etc. The sensor 158 detects a current state
of'the device, such as its current CPU load (i.e., usage of the
processor 160 itself), a rotating speed (e.g., in the case of a
lathe), a fluid throughput (e.g., in the case of a pump), etc.

Thus, the sensor develops sensor readings from the device
that describe current conditions of the device. The processors
utilize these sensor readings to perform the following steps:
1) generating a forecasting cohort of forecasting algorithms,
where the forecasting cohort comprises a first set of forecast-
ing algorithms of a first type of forecasting algorithm, and
where the forecasting cohort further comprises a second set of
forecasting algorithms of a second type of forecasting algo-
rithm;

2) determining an initial confidence level and a half-life of
each of the first set of forecasting algorithms and the second
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set of forecasting algorithms, where the initial confidence
level describes an accuracy level of each of the forecasting
algorithms at an initial time in predicting a condition, and
where the half-life describes a subsequent time at which a
forecasting algorithm has reached half of its forecast horizon;
3) determining a half-life weight for each of the first set of
forecasting algorithms and the second set of forecasting algo-
rithms at a subsequent time that is subsequent to the initial
time, where half-life weights decrease an effect of a forecast-
ing algorithm as time elapses;

4) determining a combined confidence level of the forecasting
cohort at the subsequent time, where the combined confi-
dence level is based on the initial confidence level and the
half-life weight of each of the first set of forecasting algo-
rithms and the second set of forecasting algorithms;

5) predicting future usage of the resources by the device based
on the combined confidence level of the forecasting cohort;
and

6) reallocating resources based on the predicted future usage,
where the half-life weight is calculated according to:

_ M e
2 hp2

where m, is an amount of time that has passed since the initial
time,

h,, is a half-life of a forecasting algorithm, and

a is a correction factor derived from historical data for the
half-life weight, and

wherein the combined confidence level is calculated accord-
ing to:

7 1Sl

DD fwerfr®

x=t f=0
where

17|

x=7

is a sum of all time slices taken during a life of the forecasting
cohort,
where

1

Z Sfrwx
=0

is a sum of all forecasting algorithm weights,

where

fw, represents all half-life weights of the forecasting algo-
rithms, and where

f(x) represents all forecasting algorithms in the forecasting
cohort.

As described herein, a group of forecasters is combined
together that follows the Condorcet jury theorem. The theo-
rem is implemented with a half-life equation and an adjust-
ment weight to create a cohort of forecasters that approach
better accuracy as more forecasters are added.

The present invention learns over time how to shift the
half-life equation to guarantee better performance over a time
horizon. In addition, additional forecasters can be added and
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the relative confidence of each forecast is averaged together.
Less confident forecasters that are used early in the Condorcet
jury theorem will thus have less contribution.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
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vider). In some embodiments, electronic circuitry including,
for example, programmable logic circuitry, field-program-
mable gate arrays (FPGA), or programmable logic arrays
(PLA) may execute the computer readable program instruc-
tions by utilizing state information of the computer readable
program instructions to personalize the electronic circuitry, in
order to perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the present invention. As used herein, the singular
forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises™ and/
or “comprising,” when used in this specification, specify the
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presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
various embodiments of the present invention has been pre-
sented for purposes of illustration and description, but is not
intended to be exhaustive or limited to the present invention in
the form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the present invention. The
embodiment was chosen and described in order to best
explain the principles of the present invention and the prac-
tical application, and to enable others of ordinary skill in the
art to understand the present invention for various embodi-
ments with various modifications as are suited to the particu-
lar use contemplated.

Note further that any methods described in the present
disclosure may be implemented through the use of a VHDL
(VHSIC Hardware Description Language) program and a
VHDL chip. VHDL is an exemplary design-entry language
for Field Programmable Gate Arrays (FPGAs), Application
Specific Integrated Circuits (ASICs), and other similar elec-
tronic devices. Thus, any software-implemented method
described herein may be emulated by a hardware-based
VHDL program, which is then applied to a VHDL chip, such
as a FPGA.

Having thus described embodiments of the present inven-
tion of the present application in detail and by reference to
illustrative embodiments thereof, it will be apparent that
modifications and variations are possible without departing
from the scope of the present invention defined in the
appended claims.

What is claimed is:
1. A method of implementing a forecasting cohort, the
method comprising:

generating, by one or more processors, a forecasting cohort
of forecasting algorithms, wherein the forecasting
cohort comprises a first set of forecasting algorithms of
a first type of forecasting algorithm, and wherein the
forecasting cohort further comprises a second set of
forecasting algorithms of a second type of forecasting
algorithm;

determining, by one or more processors, an initial confi-
dence level and a half-life of each of the first set of
forecasting algorithms and the second set of forecasting
algorithms, wherein the initial confidence level
describes an accuracy level of each of the forecasting
algorithms at an initial time in predicting a condition,
and wherein the half-life describes a subsequent time at
which a forecasting algorithm has reached half of its
forecast horizon;

determining, by one or more processors, a half-life weight
for each of the first set of forecasting algorithms and the
second set of forecasting algorithms at a subsequent
time that is subsequent to the initial time, wherein half-
life weights decrease an effect of a forecasting algorithm
as time elapses;

determining, by one or more processors, a combined con-
fidence level of the forecasting cohort at the subsequent
time, wherein the combined confidence level is based on
the initial confidence level and the half-life weight of
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each of the first set of forecasting algorithms and the
second set of forecasting algorithms; and
utilizing, by one or more processors, the combined confi-
dence level of the forecasting cohort at the subsequent
time to adjust resource usage.
2. The method of claim 1, further comprising:
receiving, by one or more processors, sensor readings from
a device, wherein the sensor readings describe current
conditions of the device, and wherein the device
includes resources;
predicting, by one or more processors, future usage of the
resources in the device based on the combined confi-
dence level of the forecasting cohort; and
reallocating, by one or more processors, the resources used
by the device based on the predicted future usage.
3. The method of claim 2, wherein the resources used by
the device are software resources.
4. The method of claim 2, wherein the resources used by
the device are hardware resources.
5. The method of claim 2, wherein reallocated resources
are in the device.
6. The method of claim 2, wherein the sensor readings are
received at the initial time.
7. The method of claim 2, wherein the sensor readings are
received at the subsequent time.
8. The method of claim 1, wherein the half-life weight of a
forecasting algorithm is:

My

2— hlﬁka

where m, is an amount of time that has passed since the initial
time,

h,,, is a half-life of the forecasting algorithm, and

a is a correction factor derived from historical data for the
half-life weight, and

wherein the combined confidence level is calculated accord-
ing to:

17 1l

DD fwesfr@

x=t f=0
where

17|

x=t

is a sum of all time slices taken during a life of the forecasting
cohort,
where

1

Z frwe
=0

is a sum of all forecasting algorithm weights,

where

fw, represents all half-life weights of the forecasting algo-
rithms, and where

f(x) represents all forecasting algorithms in the forecasting
cohort.
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9. The method of claim 1, wherein the resource usage is
predicted at the initial time.

10. The method of claim 1, wherein the resource usage is
predicted at the subsequent time.

11. A computer program product for implementing a fore-
casting cohort, the computer program product comprising a
computer readable storage medium having program code
embodied therewith, wherein the computer readable storage
medium is not a transitory signal per se, and wherein the
program code is readable and executable by a processor to
perform a method comprising:

generating a forecasting cohort of forecasting algorithms,

wherein the forecasting cohort comprises a first set of
forecasting algorithms of a first type of forecasting algo-
rithm, and wherein the forecasting cohort further com-
prises a second set of forecasting algorithms of'a second
type of forecasting algorithm;

determining an initial confidence level and a half-life of

each of the first set of forecasting algorithms and the
second set of forecasting algorithms, wherein the initial
confidence level describes an accuracy level of each of
the forecasting algorithms at an initial time in predicting
a condition, and wherein the half-life describes a subse-
quent time at which a forecasting algorithm has reached
half of its forecast horizon;

determining a half-life weight for each of the first set of

forecasting algorithms and the second set of forecasting
algorithms at a subsequent time that is subsequent to the
initial time, wherein half-life weights decrease an effect
of a forecasting algorithm as time elapses;

determining a combined confidence level of the forecasting

cohort at the subsequent time, wherein the combined
confidence level is based on the initial confidence level
and the half-life weight of each of the first set of fore-
casting algorithms and the second set of forecasting
algorithms; and

utilizing the combined confidence level of the forecasting

cohort at the subsequent time to adjust resource usage.

12. The computer program product of claim 11, wherein
the method further comprises:

receiving sensor readings from a device, wherein the sen-

sor readings describe current conditions of the device,
and wherein the device includes resources;

predicting future usage of the resources in the device based

on the combined confidence level of the forecasting
cohort; and

reallocating the resources used by the device based on the

predicted future usage.

13. The computer program product of claim 12, wherein
the resources used by the device are software resources.

14. The computer program product of claim 12, wherein
the resources used by the device are hardware resources.

15. The computer program product of claim 12, wherein
reallocated resources are in the device.

16. The computer program product of claim 12, wherein
the sensor readings are received at the initial time.

17. The computer program product of claim 12, wherein
the sensor readings are received at the subsequent time.

18. The computer program product of claim 11, wherein
the half-life weight of a forecasting algorithm is:

_Mr o
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where m, is an amount of time that has passed since the initial
time,

h,,, is a half-life of the forecasting algorithm, and

a is a correction factor derived from historical data for the
half-life weight, and

wherein the combined confidence level is calculated accord-
ing to:

7 1Sl

DD fwmesfr®

x=t f=0

where

is a sum of all time slices taken during a life of the forecasting
cohort,
where

1l

Z frwe
=0

is a sum of all forecasting algorithm weights,
where
fw, represents all half-life weights of the forecasting algo-
rithms, and where
(x) represents all forecasting algorithms in the forecasting
cohort.
19. The computer program product of claim 11, wherein
the resource usage is predicted at the subsequent time.
20. A device comprising:
a sensor, wherein the sensor develops sensor readings from
the device that describe current conditions of the device;
one or more processors for generating a forecasting cohort
of forecasting algorithms, wherein the forecasting
cohort comprises a first set of forecasting algorithms of
a first type of forecasting algorithm, and wherein the
forecasting cohort further comprises a second set of
forecasting algorithms of a second type of forecasting
algorithm;
one or more processors for determining an initial confi-
dence level and a half-life of each of the first set of
forecasting algorithms and the second set of forecasting
algorithms, wherein the initial confidence level
describes an accuracy level of each of the forecasting
algorithms at an initial time in predicting a condition,
and wherein the half-life describes a subsequent time at
which a forecasting algorithm has reached half of its
forecast horizon;
one or more processors for determining a half-life weight
for each of the first set of forecasting algorithms and the
second set of forecasting algorithms at a subsequent
time that is subsequent to the initial time, wherein half-
life weights decrease an effect of a forecasting algorithm
as time elapses;
one or more processors for determining a combined con-
fidence level of the forecasting cohort at the subsequent
time, wherein the combined confidence level is based on
the initial confidence level and the half-life weight of
each of the first set of forecasting algorithms and the
second set of forecasting algorithms;
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one or more processors for predicting future usage of the
resources by the device based on the combined confi-
dence level of the forecasting cohort; and

one or more processors for reallocating resources based on
the predicted future usage, wherein the half-life weight
is calculated according to:

My,

m
-7 @
2 Mg

where m, is an amount of time that has passed since the initial
time,

h, , is a half-life of a forecasting algorithm, and

a is a correction factor derived from historical data for the
half-life weight, and

wherein the combined confidence level is calculated accord-
ing to:

|7
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-continued

is a sum of all time slices taken during a life of the forecasting
cohort,
where

1

Z frwe
=0

is a sum of all forecasting algorithm weights,

where

fw, represents all half-life weights of the forecasting algo-
rithms, and where

f{x) represents all forecasting algorithms in the forecasting
cohort.



